Find the length of the arc of the semi-cubical parabola y^{2} = x^{3} between the points (1, 1) and (4, 8).

Solution:

Given,

y^{2} = x^{3}

y = x^{3/2}

\(\frac{dy}{dx} = \frac{3}{2} x^{\frac{1}{2}}\)

The arc length formula gives

L = \(\int_1^4 \sqrt{1 + \left ( \frac{dy}{dx} \right )^2 dx}\)

= \(\int_1^4 \sqrt{1 + \frac{9}{4}x dx}\)

If we substitute

u = \(1 + \frac{9}{4}x\), then \(du = \frac{9}{4} dx\)

when x = 4 then u = 10

when x = 1 then u = 13/4

Therefore

L = \(\frac{4}{9} \int_{\frac{13}{4}}^{10} \sqrt{u} \enspace du\)

= \(\left [ \frac{4}{9} . \frac{2}{3} u^{\frac{3}{2}} \right ]_{\frac{13}{3}}^{10}\)

= \(\frac{8}{27} \left [ 10^{\frac{3}{2}} – \left ( \frac{13}{4} \right )^{\frac{3}{2}} \right ]\)

= \(\frac{1}{27} \left ( 80 \sqrt{10} – 13\sqrt{13} \right )\)

If you found any type of error on the answer then please mention on the comment or report an answer or submit your new answer.

Click here to submit your answer.

Subscribe

Login

Please login to comment

0 Comments

HAMROCSIT.COM